

Sharing needs and discussing opinions for social implementation of 802.11ah in Japan

802.11ah Promotion Council

R_2.0

Needs and Expectation for Social Implementation of Wi-Fi HaLow

Needs by Industry Sector

- □ FA•Industry : Digitalization of analog meters
- Municipalities : Safety and security for the elderly and children, infrastructure monitoring in local cities (monitoring of rivers and local roads, illegal dumping, etc.)
- □ Agriculture : Crop growth management using various sensing and data for smart agriculture
- Logistics : Safety management of logistics warehouse using video and sensing, vital monitoring of workers
- D Medical care Nursing care : Safety management of hospitalized patients in bed areas (checking vitals, raising beds, falling, etc.)
- Education : Safety monitoring in school buildings, monitoring of suspicious persons in school yards and gate/back gate areas

User requests ~ Expectation for Wi-Fi HaLow

- Commercial facilities (smart cities)
 - Existing facilities are often built with wired basis, so that, wired system is often adopted when new facilities are installed.
 - When a wireless infrastructure can be built to cover the entire facility, it is expected to utilize for monitoring human-flow and retention including crime prevention, and environmental management of temperature, humidity, CO2, etc.

□ FA · Industry

- 2.4GHz Wi-Fi is used for specific terminals and systems due to areas and bandwidth limitation.
- When a wide coverage environment that can connect terminals and devices is build, it will be possible to collect data and monitor that could not be achieved before.

Municipalities

- LTE is used for infrastructure to cover a wide area of government facilities and charged running cost.
- It would be good to build a video system for community safety and security and disaster prevention with free-license.

Medical care / Nursing care

- 2.4GHz Wi-Fi is used for data communication in hospital bed areas, but area restrictions prevent the use of other systems.
- When it has wireless system that can be cover the entire bed area, it will utilize for sensing and video monitoring.

Use Case 1) Smart City

HPC entry/exit management of commercial facilities and monitoring of crime prevention and human-flow

- Demonstration overview
 - Spectators access control at large leisure facilities

Purpose of the demonstration

- The current system using LTE have a problem with communication interruption due to access congestion. Therefore, by using Wi-Fi HaLow, we confirm that it is possible to accurately count the number of visitors entering and leaving the gate without communication interruption, and stably control the opening and closing of the gate.
- We will verify that the delay caused by Wi-Fi HaLow is not a problem with respect to the timing to opening/closing the gate.

- Challenges encountered during the demonstration and their countermeasures
 - Needed to adjust the AP location considering the radio wave blockage by the building.
 - Able to prove that uplink / downlink communication delay time to / from cloud under 11ah communication bandwidth and 10% duty environment don't affect gate operation.
 - Although there was heavy rain due to a sudden downpour on the day of the demonstration, there was no problems with Wi-Fi HaLow communication.

Final results and implementation

(approx. 20m)

- The gate operated at approximately the same timing as the LTE communication even when visitors pass gate continuously when tested both 4MHz and 2MHz bandwidths.
- By increasing the number of connected devices, the additional system which crime prevention and human-flow monitoring using video images can be operated.

Quantitative effects

• The current LTE system result in permanent running costs because it's required to contract for an LTE communication per gate, but Wi-Fi HaLow system can be operated without running cost.

Entry / exit management for commercial facilities will be operated with Wi-Fi HaLow without running cost.

Use Case 2 Long-distance communication Communication infrastructure with offshore work vessels

Demonstration overview

- Safety monitoring of offshore civil engineering works and port facility construction.
- Monitoring the operation of offshore work vessels
- More efficient equipment maintenance
- Purpose of the demonstration
 - Wireless communication with offshore construction machinery
 Monitoring the operation status of construction machinery
 Optimizing maintenance plans for construction machinery
 - Real-time communication with work vessels at sea

Photo

Construction work at the port

Offshore Work Vessel

- Challenges encountered during the demonstration and their countermeasures
 - Uses 802.11ah to realize communication between land and sea over long distances.
 - Ethernet communication with facility devices can be easily made wireless.
 - 802.11ah is the best choice since it does not require installation licenses or communication fees.
- Final results and implementation
 - Easy to set up communication facilities with offshore work vessels because it is the application of Wi-Fi technology.
 - Can grasp the work status of offshore work vessels in real time.
 - Can monitor equipment operating hours and optimize maintenance management as well.
- Quantitative Effects
 - Building and operating communication lines at low cost.
 - Support for safe work through real-time equipment monitoring.
 - Reducing the time required for manual equipment inspections.

Marine communication will be solved by Wi-Fi HaLow 's IP communication instead of building dedicated facilities at huge cost.

AHPC 802.11ah推進協議会

Use Case³ Smart Factory Monitoring hazardous areas and work areas in the factory and controlling AGV

Wi-Fi HaLow achieve significant cost reductions and a stable communication environment in factories to replace 2.4GHz Wi-Fi.

Use Case ④ Smart City

Communication for LTE insensitive zone in underground area of commercial buildings and facilities

Demonstration overview

 Confirmation of various application operations underground of building which is radio insensitive zone

Purpose of the demonstration

- In existing buildings, additional wiring is difficult due to insufficient piping and available space.
- QR payment for users, parking lot vacancy status / EV charging station management in underground areas cannot cover by LTE and Wi-Fi.
- Aiming to realize DX solutions for underground parking, and optional network to support these solutions in collaboration with real estate companies.

- Challenges and their countermeasures for the demonstration
 - AP is installed on the 1st floor assuming that internet connection is located on the upper floor to improve universality.
 - A repeater is installed considering the shielding on the B1F, to communicate with the endpoint and camera at the EV charging station to construct an alternative wireless system.
- Final results and implementation
 - Checked payment, IP phone call, and video quality to find out the threshold level which the system could be operated.
- Quantitative effects
 - Even in areas where LTE communication is unstable, cameras, IP phones, and payment systems can be operated with no running cost.

Repeater		End point		Camera	
RSSI	throughput	RSSI	throughput	RSSI	throughput
-60dBm	967 Kbps	-82dBm	594 Kbps	-86dBm	389Kbps

Wi-Fi HaLow is best replacement for vertical wiring in buildings, underground, etc., and covering areas LTE insensitive zone.

Use Case (5) Preventing disaster measure Realistic local disaster prevention measure using video by local governments

- Demonstration overview
 - Improving the efficiency of river monitoring (improving accuracy of situation monitoring • reducing patrols)
- Purpose of the demonstration
 - Requiring patrols as there are many river flooding sites near urban areas.
 - The water level can be monitored day and night with high-resolution images with 11ah.
 - Monitor water level at risky flooded area remotely on a regular basis to reduce the patrol by staff.

- Challenges and their countermeasures for the demonstration
 - The image quality of water surface is unclear to determine detailed with LoRa camera image quality × transmission frequency.
 - Compared the performance of LoRa and 11ah under the heavy rain environment with cooperation of the local government.
 - Evaluated image visibility, transmission interval, etc. at a distance of approx. 500m from each AP.
- Final results and implementation
 - As a result of comparison, the difference of image quality including at night is obvious and the transmission interval is ideal for actual operation in river monitoring.
 - High evaluation of the 11ah camera's visibility at night by the local government.
- Quantitative effects (Performance comparison LoRa vs. 11ah)
 - 11ah system can send HD size video, about 12 times the number of pixels, where LoRa could only send QVGA video over time.
 - It is possible to send images at 20 times the transmission interval of LoRa.

Wi-Fi HaLow can fully solve the obvious issues and needs by conventional LPWA.

Activities to development and expand the Wi-Fi HaLow market

